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ABSTRACT 

Resilience is a much-needed characteristic in systems that are expected to operate in uncertain, 
disruptive environments for extended periods. Resilience approaches today employ ad hoc 
methods and piece-meal solutions that are difficult to verify and test, and do not scale. 
Furthermore, it is difficult to assess the long-term impact of such ad hoc “resilience solutions.” 
This research presents a flexible contract-based approach that employs a combination of formal 
methods for verification and testing and flexible assertions and probabilistic modeling to handle 
uncertainty during mission execution. A flexible contract (FC) is a hybrid modeling construct that 
facilitates system verification and testing while offering the requisite flexibility to cope with non-
determinism. This research illustrates the use of FCs for multi-UAV swarm control in partially 
observable, dynamic environments. However, the approach is sufficiently general for use in other 
domains such as self-driving vehicle and adaptive power/energy grids. 
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INTRODUCTION  

Resilience, a non-functional property, allows a system or system of systems (SoS) to continue to 
provide useful service in the face of disruptions (Neches and Madni, 2011). Disruptions can be 
external, systemic, or human-triggered (Madni and Jackson, 2009). Examples of disruptions in 
the operational context of multi-UAV swarms include a hacked or compromised swarm member, 
loss of communication within the swarm or between specific swarm members, and loss of 
visibility due to extreme weather or sensor malfunction. Resilient responses to such disruptions 
can take a variety of forms depending on environment observability and available intelligence. 
These include: circumvent disruptions if they can be anticipated; withstand disruption if within 
designed performance envelope; and recover rapidly from the negative effects of disruptions 
outside the performance envelope. Practically speaking, this means dynamically extending 
system capacity to cope with disruptions; restructuring or reconfiguring system pursuant to 
disruptions; and continuing to operate at somewhat diminished but acceptable level. The 
system’s design envelope includes system models and adaptation logic incorporated within the 
system model to produce the requisite resilient responses when such disruptions occur. Doyle 
(2016) defines resilience as the ability to recognize unanticipated perturbations that fall outside 
the system’s design envelope. This definition implies that resilience is concerned with monitoring 
the boundary conditions of the system’s model for competence (how well resilience strategies 
match disruption demands), and then adjusting or expanding that model to better accommodate 
changing demands (Neches and Madni, 2011). The key issue here is assessing an organization’s 
adaptive capacity (i.e., resource buffers that allow resources of a particular type to be increased 
on demand to a maximum limit) relative to the challenge posed by the disrupting event to that 
adaptive capacity. Boundaries in the multi-UAV swarm context define the system’s competent 
performance envelope relative to specific classes of disruptions and uncertainties. Therefore, 
resilience engineering in a certain sense is concerned with introducing transparency into an 
organization’s safety model with the purpose of determining when the model needs to be 
revised. In other words, resilience engineering is concerned with monitoring a system’s decision 
making with a view to assessing the system’s risks and risk envelope relative to unsafe operating 
boundaries. 
 
Risk monitoring implies proactive and automatic/semi-automatic monitoring of buffers, margins, 
and tolerances.  Buffer capacity is concerned with the magnitude and type of disruptions a system 
can absorb or adapt to without a substantial degradation in system performance or breakdown 
in integrity of system structure. Flexibility is the ability of a system to restructure or reorganize 
itself in response to external changes or pressures (Madni, 2009). Margin is the proximity of a 
system’s operation regime relative to its designed operational performance envelope or 
boundary. Tolerance is the ability of a system to degrade gracefully (as opposed to collapsing) as 
stress/pressure increases, or when disruption magnitude and/or severity exceeds its adaptive 
capacity. 
 
This paper presents a model-based approach that combines formal and probabilistic modeling to 
engineer resilient system and verify their designs.  
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TECHNICAL CHALLENGES  

There are several technical challenges that have to be overcome in developing formal methods 
for the engineering of resilient systems including choosing the right system modeling construct, 
the right technology platform for development and demonstration, and the right application 
domain. These considerations are discussed next.  
        Application Domain. We chose UAV swarm control as our application domain. A UAV swarm 
is a system-of-system (SoS) in which the elements can be either homogeneous or heterogeneous. 
The elements in the SoS cooperate to perform their assigned mission or mutually agreed to tasks, 
and coordinate as needed. Each UAV in the swarm is equipped with sensors and communication 
facilities. UAV swarms are used in a variety of missions in the military and civilian sector. Exemplar 
missions include search and rescue, reconnaissance and surveillance, humanitarian assistance, 
and disaster relief. 
         System Modeling Construct. Selecting the right modeling construct is a key challenge. The 
model needs to be semantically expressive, scalable, amenable to verification, and sufficiently 
flexible to support mechanisms needed to handle non-determinism. 
         Technology Platform. The technology platform for this effort needs to support SoS 
specification and visualization, deterministic and probabilistic modeling, and integration with 
analytics and reporting modules (Figure 1).  
 
As shown in this figure, the architecture is layered with each layer assigned to a particular model 
type. There are different types of models associated with this small SoS: vehicle physics model 
(Appendix B); probabilistic Partially Observable Markov Decision Process Model and 
simulated/actual data sources (Figure 1). Each is discussed next. 
 

 
Figure 1. Technology Platform Employs a Layered System Architecture 
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FORMAL  MODELING OF SYSTEMS AND SOS  

Formal modeling introduces rigor in system verification, testing, and reasoning. However, formal 
modeling has limitations. The rigor in formal modeling comes at the expense of flexibility. Ideally, 
one wants a degree of formality to support model verification and testing, and sufficient flexibility 
to scale and cope with uncertainty. This recognition provided the impetus for this research. 
 
Our modeling approach extends the concept of a “contract” in Contract-Based Design (CBD) to 
address uncertainty and partial observability that contribute to non-deterministic system 
behavior (Madni, 2015; Sievers, 2014). CBD is a formal method for explicitly defining, verifying 
and validating system requirements, constraints and interfaces. An implementation satisfies a 
design contract if it fulfills guarantees when assumptions are true. This is the “assert-guarantee” 
construct used in CBD. The rationale for choosing CBD is that statements in contracts are 
mathematically provable. The limitation of a traditional contract or CBD is that the assertions are 
invariant. The key innovation in our approach is the relaxation of invariant assertions 
requirement to introduce flexibility in the contract. The resulting “resilience contract (RC)” is a 
hybrid modeling construct that combines traditional contract, and flexible assertions, with 
Partially Observable Markov Decision Processes (POMDP). A POMDP is a special form of a Markov 
Decision Process that includes unobservable states and state transitions that are trained during 
system use. POMDPs introduce flexibility into a traditional contract by allowing incomplete 
specification of legal inputs and flexible definition of post-condition corrections (Madni, 2015; 
Sievers, 2014). A resilience contract extends a deterministic (i.e., traditional) contract for 
stochastic systems. 
 
Figure 2 shows a hierarchical resiliency model using SysML block definition notation. The system 
comprises two subsystems as shown. Each subsystem and the system have individual RCs that 
comprise parameters and operations associated with its POMDP. As described below, RCs are 
software agents that update a belief state and determine the next action based on observing 
element outputs, the current belief state, the transition probabilities associated with the current 
state, and the reward (or penalty) for taking a given action. A belief state represents an entity’s 
most probable state. 
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Figure 2. Resiliency Model 

 
The assertions associated with a resilience contract are flexible, and the techniques employed 
include in-use learning, uncertainty handling, and pattern recognition. A RC is developed at 
design time and trained during system use (“learning”). It allows trading of model verification for 
model flexibility, and vice versa. 
 
Contract flexibility is introduced by: relaxing the time invariance restrictions on the state space 
and action space, adding evaluation metrics for determining best action, and updating  emission 
and transition probabilities of hidden states. By replacing the “assert-guarantee” construct with 
a “belief-reward” construct, a traditional contract can be made flexible without compromising 
model verification to an appreciable degree. 
 

UAV SWARM MODELING AND ILLUSTRATIVE EXAMPLE  

For UAV swarm modeling, we employ a combination of methods. To convey the key modeling 
concepts, we employ  a swarm of quadcopters as our illustrative example. To model and evaluate 
system and SoS resilience, the questions that need to be answered pertain to model fidelity, 
model verifiability, and model flexibility. Fidelity pertains to the depth of modeling and the 
perspectives needed to answer the questions posed. Verifiability pertains to model correctness 
analysis. Flexibility pertains to the ease of extending or augmenting the model with reasoning 
mechanisms that introduce various forms of resilience. Ideally, we want just enough fidelity, and 
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adequate flexibility to respond to disruptions. At the single UAV level, just enough flexibility 
means rudimentary dynamics of the UAV (i.e., quadcopter), basic sensor model and a basic 
collision avoidance algorithm. The model could be run offline to generate parametric curves that 
could then be used to accept commands from the probabilistic model and generate new locations 
that can be used by the graphic visualizations. The model needs to support waypoint navigation 
and trajectory following. And, the model should be easily replicable to realize SoS behavior. 
  
At the SoS level, the model needs to support different missions, communication protocols, and 
SoS configurations. The model should be capable of reflecting the behavior of hacked or 
compromised UAV in the SoS, loss of communication, loss of a UAV, loss of sensing, and 
malfunctioning SoS member. At both the individual UAV level and the swarm level, it should be 
possible to evaluate different resilience concepts. Figure 3 shows a UAV-SoS Concept of 
Operations that informs system and SoS modeling. 
 
 
 
 
 
 
 
 
 
 

Figure 3. UAV SoS CONOPS 

 

BEHAVIORAL PATTERNS  

UAV swarm behaviors can be conveniently grouped into four behavior patterns: deployment; 
enroute; action on objective; and redeployment. Each behavior pattern, associated with a 
mission phase, is discussed next. 
 
Deployment (or takeoff) pattern: act of putting SoS into operation. UAVs initiate operations and 
take flight. Variations in Pattern come in the form of: Takeoff Method: Vertical (VTOL), Horizontal 
or Conventional (CTOL), Assisted (Mechanical or Human Catapult, piggybacked from aircraft, 
propulsion assistance for short takeoff), etc.; Takeoff Order: Sequential vs. Parallel; Swarm Size, 
Hierarchy, and Homogeneity; Mission: new, clean sheet deployment, or are UAVs reinforcing 
another UAV swarm; Platform: airfield, airport, grass field, naval ship, and improvised (such as a 
road or building top). The key factors affecting operation are characterized by Mission-Enemy-
Troops-Terrain-and-Weather-Time Available-Civilian (METT-TC). An example of METT-TC factor 
is “enemy has robust air-defense in area necessitating unique flight maneuvers on takeoff.”  
Enroute (or cruise) pattern: act of deployed swarm flying from one location to another in pursuit 
of overall mission. UAV SoS objectives are: navigate as appropriate in support of global mission, 
pathfind at a local level, and maneuver through terrain, weather, other UAVs in SoS, and 
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neighboring systems not a part of SoS (e.g., coalition aircraft, enemy aircraft, noncombatant 
aircraft), as well as make trade-offs in pathfinding and navigating using attributes of METT-TC. 
Variations in Pattern comes in the form of Tactical Flight Considerations; high altitude vs. mid-
altitude vs. NAP of the earth vs. a combination; formation and disposition during cruise; swarm 
size, composition, and capabilities (swarm heterogeneity factors); enemy air defense capabilities 
and presence; and weather.  
 
Actions on Objective pattern: key part of overall CONOPS. Swarm achieves commander’s intent 
and mission purpose (e.g. Reconnaissance, Observation, Sensing, Collecting, Aerial 
communications retransmit) Kinetic examples are: destroy enemy assets; and neutralize enemy 
unit. UAV SoS Objectives can be tactically addressed at a local level both as individual systems 
and as a swarm to successfully execute actions on objectives and deploy UAV Systems as a SoS 
to achieve desired tactical and operational objectives in the battlespace. Variations in Pattern - 
highly METT-TC dependent; examples: Coordinated payload delivery to destroy a bridge and 
conduct recon; Battlefield sensing and communications retransmission to support a focused, 
ground-based operation; Routine mapping and imagery collection; Search & Rescue operation to 
locate downed aircraft in suspected geographical “crash window”. 
 
Redeployment pattern: act of safely taking SoS out of operation. UAVs must RTB (return to base) 
and land, while preserving themselves and collected data (if held onboard). Variations of the 
Pattern include: Landing Method: Vertical (VTOL), Horizontal or Conventional (CTOL), Assisted 
(tail hook and cable, parachute landing or drag chute once landed), Landing Order: Sequential vs. 
Parallel, Swarm Size, Hierarchy, and Homogeneity, Mission: new, clean sheet deployment or are 
UAVs reinforcing another UAV swarm, Platform: airfield, airport, grass field, naval ship, 
improvised (e.g., a road or building top), Other METT-TC factors: e.g., enemy has robust air-
defense in area necessitating unique flight maneuvers on landing, Hasty landing: e.g., a damaged 
UAV improvises and lands in a clear area and sends out a distress signal.  
 
Each basic pattern can adapted and be decomposed into multiple more nuanced, specific 
scenarios using METT-TC considerations that apply to the SoS mission. Fundamental concepts for 
top layer patterns are adapted and developed for highly specific use cases (e.g., fundamentals of 
an attack apply, but tactics behind attacking an enemy tank column vary - in the open versus 
enemy ground troops in wooded mountains). The right level of decomposition and detail for each 
top-level pattern help answer questions about where to introduce resilience and how best to 
incorporate resilience logic/reasoning within the SoS.  
 
Figure 4 shows the state transition diagram for a quadcopter. In this figure, some transitions are 
labeled with belief values, e.g., b (failed) ≥ 0.95 is threshold of transition from “normal motors” 
to “failed motor” i.e. transition happens if belief ≥ 0.95 that a motor has failed. Some transitions 
have fixed assertions, e.g., failed Motor and Operational, Transition from “Evaluate 
Environment” to “Auto Plan Enabled” has three beliefs with different probabilities in our 
example. Auto Planner determines the course of action to take based on environment beliefs, 
motor condition beliefs, and the goals (action taken is the one that maximizes reward or 
minimizes penalty). 
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Figure 4. State Transition Diagram for Multi-UAV SoS 

 
A UAV swarm can be viewed as a system-of-systems (SoS) because multiple UAVs need to 
cooperate to accomplish an end-to-end mission.  A UAV swarm, especially a heterogeneous 
swarm, exhibits the characteristics of a SoS (Table 1).  
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Table 1. UAV Swarm Exhibits Characteristics of a SoS 

¶ Operational Independence of UAVs 

- UAVs operate independently to satisfy mission requirements  

¶ Managerial Independence of UAVs 

- each governed independently while being part of swarm 

¶ Evolutionary Development of SoS  

- functions and purposes added / removed / modified with 
experience and need 

¶ Emergent SoS Behavior 

- SoS performs functions that do not reside in any single UAV 

- emergent behavior cannot be realized by a single UAV 

¶ Geographic Distribution 

- UAVs are displaced in space and time and primarily exchange 
information 

 

UAV SWARM CONTROL ARCHITECTURE AND CONOPS 

Figure 5 presents swarm control architecture based on creating an optimal policy based on belief 
estimates provided by the state estimator. The state estimator relies on observations from the 
UAV swarm, environment sensors, and MDP belief model to generate updated belief estimates. 
Policy actions act on the UAV swarm and are used by the state estimator to update state 
information.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Example Swarm Control Architecture 

 
A simple example is used to convey the key ideas of UAV swarm control. In this example, the UAV 
swarm needs to turn either left or right to avoid an obstacle. There is uncertainty regarding the 
location of the threat, in that the threat could be to the left or the right of the swarm. A decision 
needs to be made to veer left or veer right. If the swarm veers right and the threat is 
located/headed to the right, serious consequences could ensue. The same is true if the swarm 
veers left and the threat is heading left. There are three possible actions that the swarm can take: 
veer left; veer right; continue flying straight ahead and collect more observations on the threat. 
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POMDP policy for this simple concept of operations (CONOPS) has to deal with considerations 
such as: UAVs not crashing into each other; all UAVs getting safely to their destination; UAVs 
avoiding potentially disruptive events; if one or more UAVs is shot down, the remaining UAVs 
reorganize and reallocate functionality to ensure accomplishment of mission objective to the 
extent feasible. The key ideas behind an optimal POMDP policy are two-fold: a POMDP policy 
maps current belief into an action; and an optimal POMDP policy is a continuous solution of a 
belief MDP. Figure 5 shows the equation for summation of outcomes based on the path the UAVs 
take. The equation normalizes the rewards and penalties. As shown in Figure 6, the system starts 
with a 50-50 belief that the threat could be to the left or the right. The system notices a potential 
threat to the left. So, the system moves its belief to the left as shown in the figure. That is, there 
is a greater belief that the threat could be to the left. Also, the system does not observe anything 
to the right. Thus, belief is updated in accord with Bayesian analysis using observation and current 
state. 
 
 
 
 
 
 
 
 

 

 

Figure 6. Iterative Update of Beliefs 

 

A key problem with state space models is that they are subject to combinatorial explosion. To 
contain this explosion, several methods can be applied including: Pruning (Bellman 1957); branch 
and bound (Morrison, et. al., 2016), heuristic search (Szer 2012), Monte Carlo search (Browne 
2012), and policy tree (Golovin 2010). Additionally, we relax the strict Markov assumptions by 
including heuristic analyses that use state trajectories when necessary for reducing ambiguities 
that increase the cost of computing the most likely belief state. 
 

 

REAL-TIME UAV PLANNING AND DECISION-MAKING USING POMDP 

The use of Markov Decision Process (MDP) and reinforcement learning have proven to be 
successful in environments in which an agent (e.g., UAV) has access to reliable state information 
(Spaan, 2012). With MDP models that employ reinforcement learning, the agent is assumed to 
receive perfect and complete information about its environment through both onboard and 
remote sensors. However, assuming perfect state information (full observability) is a strong 
assumption which is seldom true in the real-world. This is because sensors tend to be error-prone 
with limited capabilities for monitoring the environment. This limitation can result in ambiguity 
and uncertainty in determining system and environmental states.  



 
 

Report No. SERC-2018-TR-111                                                                           [December 21, 2018] 

11 

Partially Observable Markov Decision Process (POMDP), an extension of MDP, addresses 
uncertain and incomplete observations (resulting from the agent’s imperfect sensors) and allows 
for effective decision making in partially observable environments (Spaan, 2012). POMDPs have 
been used in various types of applications and problems, for which the classic examples are 
machine maintenance (Smallwood and Sondik, 1973), structural inspection (Tao et al., 1995), 
robot navigation (Foka et al., 2007), and human-robot interaction (Doshi et al., 2008). A POMDP 
accounts for imperfect knowledge of system state through the incorporation of hidden states 
(which are initially limited to observable system states.) The hidden states are intended to explain 
observations that cannot be explained using the observable states. 
 
A partially observable Markov decision process is a tuple ộὛȟὃȟɱȟὝȟὕȟὙ Ớ in which Ὓ is a finite 
set of states, ὃ is a finite set of actions, ɱ is a finite set of observations, Ὕ is a transition function 
defined as ὝȡὛ ὃ Ὓ O πȟρ, ὕ is an observation function defined as ὕȡὛ ὃ ɱ O πȟρ, 
and Ὑ is a reward function defined as ὙȡὛ ὃ Ὓ O  ᴙ (Spaan, 2012). POMDPs share some 
features with the MDPs, such as the state, action, and reward definitions. However, POMDPs use 
uncertain and partial observations as indication of the states rather than observing the state 
directly. POMDPs are memory-less models that use a probability distribution, the so-called belief 
vector, to summarize their past information and to interpret their current knowledge of their 
environment. Each POMDP problem initializes an initial belief ὦ, such as a uniform distribution 
over all states. This belief vector gets updated based on Bayes’ rule each time the agent performs 
an action and makes an observation: 
 
 
 
 
In this formula, ὴέȿὛȟὥ is the probability of observing έ when you do action ὥ in state Ὓȭ (i.e. 
emission probability) and  ὴὛȿίȟὥ is the probability of doing action ὥ at state ί and 
transitioning to state Ὓȭ (i.e., transition probability). Finally, ὦί is the current belief vector that 
shows the probability distribution over the states.  
 
As with MDPs, POMDPs can evaluate a sequence of actions (policies) and find the optimal policy 
using the Bellman’s equation. However, since the states cannot be exactly determined in a 
POMDP model, continuous probability distributions (belief vectors) are used to represent the 
best proxies for states in this model. Attempting to solve the Bellman’s equation, either for policy 
evaluation or optimal policy search, is a computationally expensive proposition because there 
are uncountably many belief states, even for simple problems with small state and action spaces. 
Bellman’s value iteration equation for a belief vector in a POMDP model is presented by the 
formula: 
 
 
 
 
In this formula, ὠᶻὦ represents the optimal value for a belief vector ὦ, ὦὛ is the current belief 
vector, ὙὛȟὥ is the  value or reward of doing action ὥ in state Ὓ, π  ρ is a discounting 

ὦὛ ὴὛȿὥȟέȟὦ  
ὴέȿὛȟὥВ ὴὛȿίȟὥὦίᶰ

В ὴέȿίȟὥВ ὴίȿίȟὥὦίᶰᶰ
 

ὠᶻὦ  ÍÁØ
 ɴ

ὦὛὙὛȟὥ  ὴέȿὦȟὥὠᶻὦ

  ɴ
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factor, ὴέȿὦȟὥ is the probability of observing έ, when you do action ὥ on belief vector ὦ, and 
ὠᶻὦ  is the value of resulted belief vector after doing action ὥ and observing έ. 
Various approaches have been introduced in the POMDP literature for reducing the complexity 
of value iteration in POMDP models. These include enumeration algorithm (Monahan, 1982); 
one-pass algorithm (Sondik, 1971); linear support algorithm (Cheng, 1988); witness algorithm 
(Littman et al., 1994); and incremental pruning (Cassandra et al., 1997). Even so, solving the 
POMDP problem continues to be a complex, computationally-intensive problem.  
 
We employ for probabilistic planning and decision making in scenarios involving partial 
observability and disruptions. In other words, in this example we are not attempting to address 
the complexity of value iteration in POMDPs. Rather, our goal is to simplify POMDP models by 
relaxing specific constraints that do not detract from our objectives and incorporating heuristics 
associated with reasonable assumptions. 
 
In this example, we execute POMDP models in operational scenario simulations. In our approach, 
based on the interaction between the agent and the environment, the agent considers only belief 
points, that result from previous actions and environmental observations, instead of considering 
every single belief point that could result from all combinations of observations-actions 
sequences. In other words, automatic pruning of the belief tree in the POMDP model is 
performed by limiting the constructed belief space to only those belief points that result from 
performed actions and observations (i.e. feedback) from the environment. This example divides 
the agent-environment’s actions-reactions into episodes (a series of finite number of time-steps), 
and the value function in the POMDP model only evaluates the best policy for an episode, rather 
than evaluating the overall best policy for the entire scenario. In this example, each time-step is 
defined as the time that the POMDP model is being invoked for planning and decision making. 
Assuming that the scenario can be divided into discrete, time-steps that cumulative are equal to 
the required number of actions that the agent takes within a scenario, each episode will contain 
a specific number of these time-steps (e.g. 2 time-steps).  In our POMDP model, the episodes 
overlap. This means that the tail of the previous episode becomes the initial point for the next 
episode. This strategy helps in refining and updating predicted actions and policies from previous 
episodes based on new observations associated with new episodes. 
 
Partitioning the scenario into overlapping episodes helps in determining the optimal belief tree 
(sequences of beliefs in a scenario) for the whole scenario. The optimal belief tree is achieved by 
attaching the series of constructed belief trees from episodes to each other.  
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Figure 7. Example of Value Function in a Sequence of Episodes with Predicted Beliefs, ╫ᴂ◄ , ( in one episode 

based on the current belief b(t), one action that is action (i), and all available observations) 
 
In our POMDP model (Figure 7), we evaluate the mapping between beliefs and actions. These are 
partial policies in each episode based on the current belief vector, available actions, observation 
made, and resulting beliefs associated with that episode. We do these instead of evaluating the 
values of every belief vector using the Bellman’s value iteration equation. In other words, the 
value function in our POMDP model is designed to evaluate the available policies (based on 
available actions, observation made, and updated belief vectors), and provide a series of actions 
that can result in the maximum value for that episode. The series of actions resulting from each 
episode can be refined and completed by actions associated with the next episode that overlaps 
with the current episode (based on observations made and agent’s actions). The value function 
is discussed in the next section. 
 

CONSTRUCTION OF THE UAV POMDP MODEL 

The UAV POMDP model is intended to enable probabilistic decision making and planning for an 
autonomous UAV in a representable UAV scenario mission that requires the UAV to accomplish 
its mission safely. In our model, the POMDP is used for higher level planning and decision making 
based on the UAV’s behavior, conditions, and defined mission(s).  
 
Defining the actions, states, and goal: A key challenge with reinforcement learning (RL) is 
designing an appropriate system model with just enough number of states and actions to avoid 
state space explosion. State space explosion typically occurs when a model has a large number 
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of states which make its solution computationally impractical and expensive. To avoid running 
into these problems in our example, we defined the POMDP model for high-level decisions by 
using 5 (high-level) states and 5 general actions. This means that each state is a representation 
of a class of observations rather than only a single type of observation, and the actions are high-
level decisions. In other words, the POMDP model provides a high-level solution to the problem, 
in that, it is the core of the optimal solution that makes only high-level decisions based on 
evidence and belief.  We use heuristics, rules, and helper functions outside the POMDP model to 
infer observations and translate high-level decisions into reasonable actions that the UAV’s 
controller can understand. Making appropriate and warranted assumptions and using the right 
rules and heuristics helps with modeling the system with a reasonable number of states and 
actions. 
 
In this example, an autonomous UAV is employed to maintain surveillance and monitoring in a 
pre-defined area, such as an airplane landing strip. This requires a UAV to make right decisions, 
such as move or hover anytime it’s needed. As noted above, subroutines and helper functions 
are employed to translate a decision to an action by providing the requisite details. For instance, 
if the POMDP decides that the UAV should “move”, then the helper function tells which direction 
it should move, or where it is required to be by informing it “move from point A to point B”. In 
addition to mission-based states, the POMDP model needs to ensure that the UAV is physically 
capable of performing its mission. The latter implies that the UAV has adequate battery power 
and subsystems are in reasonably good health. Based on the foregoing assumptions, we have 
defined the following states, actions, and observations for the UAV POMDP model. 

Table 2. Physical Readiness State Space of the UAV POMDP Model 

State Definition 

╢ (Good to Go) This state represents the physical capability of the quadcopter in 
performing assigned missions. 

╢(Battery Yellow) This state represents the situations when the quadcopter has battery 
power only for performing a few actions (e.g. landing ). 

╢ (Battery Red) Similar to the previous state, this state provides information about the 
quadcopter’s battery status and represents the situations in which the 
UAV’s battery is running out of power. 

╢ (Health Issue) This state is defined to provide information about the overall health 
status of the quadcopter, which includes combinations of health-related 
information from different subsystems of the UAV. If there is any 
problem or issue with any of the sub-systems that are being monitored, 
this state will communicate that to our POMDP model. 

 
Table 2 shows the state space of the POMDP model that is defined for monitoring the physical 
readiness of the UAV quadcopter. Each state is responsible for monitoring a class of information 
(observations) resulting from quadcopter subsystems. The initial state or “Good to Go”, Ὓ, will 
have a higher probability if the quadcopter’s safety is ensured. This implies that the combination 
of information reported from the different quadcopter subsystems have met pre-defined criteria 
for the quadcopter, which shows physical ability of the quadcopter for performing actions. The 
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second and third states, which are “Battery Yellow” and “Battery Red”, Ὓ and Ὓ, respectively, 
represent a class of observations made from the UAV’s battery voltage. State 1 will have a higher 
probability when an observation shows that the battery voltage is in a pre-defined “Yellow” 
range. This color code implies that the UAV’s battery will allow for only a limited number of 
actions, such as moving the quadcopter to the closest charging station. On the other hand, state 
2 has a higher probability if an observation shows that the battery voltage is below a pre-defined 
safe threshold. This condition means that the quadcopter should abort its mission and land 
immediately.  
 
The last state or “Health Issue”, Ὓ, represents classes of information (observation(s)) that show 
the quadcopter is not reliable anymore because of abnormal behavior of one or more 
subsystems. In other words, the probability of transitioning to Ὓ is high if the quadcopter makes 
an observation that does not meet a set of pre-defined health related requirements and 
thresholds. 

Table 3. Mission State Space of UAV POMDP Model 

State Definition 

╢ (On Spot) This state is defined based on the quadcopter’s location compared to 
where it has to be. This state enables the POMDP model to control the 
UAVs location by ensuring that the UAV is located on a desired and pre-
defined location. 

╢ (Off Spot) Similar to the “On Spot” state, this state is defined with respect to the 
quadcopter’s location. However, it represents classes of observations that 
show the UAV is off a pre-planned location. 

 
Table 3 represents the mission related state space of the UAV’s POMDP model. These states are 
defined to keep track of the quadcopter’s locations in the area. Ὓ or “On Spot” state is a 
representation of location related observations that show approximately zero distance between 
the quadcopter’s current location and its pre-planned location. On the other hand, Ὓ or “Off 
spot” state describes those location related observations that the distance between the 
quadcopter’s current location and its pre-planned location is not negligible. This can happen 
when assigning a new mission(s) or under off-nominal environmental factors, such as wind gust.   
 The UAV’s mission related POMDP model (i.e. states and actions) is a separate model, distinct 
from the UAV’s physical readiness POMDP model. This implies that there is no action that can 
result in direct transition from mission-based states to physical readiness related states. 
However, the former POMDP model is enabled by the latter. In other words, the mission related 
state space is nested inside the physical condition state space and is only enabled, if needed. As 
noted earlier, we want to ensure physical readiness before undertaking a mission. Thus physical 
readiness-related decision making and planning needs to occur prior to mission related planning 
and decision making. For instance, if the quadcopter’s POMDP model believes that the 
quadcopter is in the “Battery Red” state, then planning for any mission(s) is irrelevant, because 
the quadcopter is unable to perform the mission. The mission related POMDP is enabled only 
when the quadcopter’s physical readiness POMDP model believes that the quadcopter is 
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physically capable of performing the mission or the quadcopter can take a series of actions to 
stay safe, such as moving to the closest safe state (e.g. charging station).  
Tables 4 and 5 show all high-level actions associated with the quadcopter’s physical readiness 
and mission based POMDP models, respectively. ὃ  or “None/Wait” action is a joint action in the 
two quadcopter POMDP models and it implies that the quadcopter’s POMDP model is not going 
to provide a new plan or decision until a new observation is made. The second action of the 
quadcopter’s physical condition POMDP model is enabled when the POMDP believes that the 
system’s “Good to Go” state has a high probability. This means that the quadcopter is physically 
able to perform the assigned mission(s). Thus, the lower level or nested POMDP is enabled for 
mission related decision making and planning. Besides the ὃ  action, this POMDP model can 
inform the quadcopter to hover or move. The former is performed when the associated POMDP 
model believes that the quadcopter’s “On-Spot” state has a higher probability and the 
quadcopter is on a pre-planned location. On the other hand, when the lower level POMDP 
believes that the quadcopter’s “Off Spot” state has a higher probability, it decides to move the 
UAV towards a pre-planned location. ὃ  or “Go to Safe State” action from the higher level 
POMDP, is associated with the “Battery Yellow” state from this POMDP. A “safe state” is a set of 
pre-defined charging stations located on the area or ground itself. When the POMDP informs the 
quadcopter to perform this action, a sub-function (i.e. helper function) finds the closest safe state 
(either a charging station or ground) and the quadcopter moves to that safe state. ὃ  or “Land” 
action is the final action from the higher level POMDP. This action is associated with the states 
to which the POMDP transition when there is a health-related concern, or the battery is out of 
power.  
 

Table 4. Physical Readiness Action Space of UAV POMDP Model 

Action Definition 

═  (None/Wait) This action means that the POMDP needs more evidence from the 
environment to make a decision, so it will maintain status quo until a 
new observation is received. 

═ (Enable the 
Lower Level 
POMDP) 

This action means that the lower level POMDP (mission related POMDP) 
should be enabled and the overall action has to be decided by the lower 
level POMDP. 

═  (Go to Safe 
State) 

This action means that the quadcopter should find the closest “safe” 
state and move to there.  

═  (Land) This action requires the quadcopter to abort its mission and land on the 
ground immediately.  

Table 5. Mission Action Space of UAV POMDP Model 

Action Definition 

═  (None/Wait) This action means that the POMDP needs more evidence from the 
environment to make a decision, so it will maintain status quo until a 
new observation is received. 

═  (Move) This action means that the quadcopter’s destination location is different 
from its current location and the quadcopter should move from the 
current location to the destination location. 
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═  (Hover) This action means that the quadcopter should hover at its current 
location. 

 
Table 6 presents the observations of the POMDP model. At each time step, the quadcopter’s 
POMDP model makes a decision and receives feedback (observation) from its environment based 
on its decision and will update its belief state based on the action and feedback. Since, the 
POMDP is designed to keep track of several types of information using its states, an observation 
needs to be a combination of all the features identified in the table above. In other words, the 
POMDP will receive a tuple ộLoc0, Loc1, Voltage, Vibration Rate, Error Rate of Quadcopter 
Performance, Battery Discharge Rate, Engines TemperatureỚ in which ὒέὧπ and ὒέὧρ are 2 
individual vectors that provide information about the current location and desired location of the 
quadcopter, respectively (i.e. local GPS information). ὠέὰὸὥὫὩ is the current battery voltage and 
provides the required information for POMDP’s “Battery Yellow” and “Battery Red” states of the 
system’s battery. ὠὭὦὶὥὸὭέὲ ὙὥὸὩ is in the form of time series data. It provides information on 
vibrations in a quadcopter. The Ὁὶὶέὶ ὙὥὸὩ έὪ ήόὥὨὧέὴὸὩὶᴂί ὖὩὶὪέὶάὥὲὧὩ observation from 
the tuple is an observation that provides information about the accuracy of the quadcopter in 
performing assigned actions. For instance, this observation can be GPS error if the action is move 
from point A to point B to show how accurate the UAV can be in its maneuvers.  
ὄὥὸὸὩὶώ ὈὭίὧὬὥὶὫὩ ὙὥὸὩ  is an observation that provides information about the quadcopter’s 
battery discharge rate, so it can be compared to an average discharge rate of a healthy battery.  
ὉὲὫὭὲὩί ὝὩάὴὩὶὥὸόὶὩ is the final entry in the observation-tuple that provides the quadcopter’s 
engine temperature (Celsius or Fahrenheit).   

Table 6. Observations for Quadcopter POMDP Model 

Feature Definition 

Current Location This is a vector (x, y, z) that shows the current location of the quadcopter. 

Desired Location This is a vector (x’, y’, z’) that shows the location where the quadcopter 
should be. 

Battery Voltage This observation provides information about the status of the battery. 

Vibration Data This observation provides information about the vibration rate of the 
quadcopter. 

Performance 
Accuracy 

The Performance Accuracy observation is associated with the ability of the 
quadcopter in performing assigned actions.   

Battery Health This observation provides information about the discharge rate of the 
quadcopter’s battery.   

Engine Heat This observation is associated with the measured heat from quadcopter’s 
engines. 

 
A specially designed helper function is used to analyze the information in the tuple based on a 
set of pre-defined rules and heuristics. This function determines the class of observations to 
which each observation belongs based on importance and priority of the features in the tuple. It 
is important to define appropriate heuristics and rules to prioritize the information in the tuple. 
For instance, one of the most important heuristics in the helper function is to analyze the 
quadcopter’s overall health first, which gives higher priority to the observations that are related 
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to quadcopter’s health, such as Vibration Data, Battery Health, and Engine Temperature. The 
reason for this check is that the quadcopter can perform its assigned missions if and only if its 
engines and batteries are in good health; if these conditions are not met, then the quadcopter’s 
location or mission become irrelevant. 
 
POMDP Model and Value Function (Table 7): Once the states, actions, and observations of the 
quadcopter’s POMDP model are defined, we can initialize the POMDP model. This initialization 
comprises initializing the belief state, defining the transition and emission probabilities, and 
building the transition, Ὕ, emission, ὤ, and reward matrices, Ὑ. The initial belief states of both 
POMDP models associated with the quadcopter are uniform distributions over the respective 
state spaces of the POMDP models.  This means that equal beliefs (probabilities) are assigned to 
each available state in quadcopter’s POMDP models. Considering the number of states in the 
quadcopter’s POMDP models (4 and 2 states in the physical condition and mission related state 
spaces, respectively), the initial belief states will be ὦ πȢςυȟπȢςυȟπȢςυȟπȢςυand ὦ
πȢυȟπȢυ respectively. There are two reward matrices in this example.  Each reward matrix is 

associated with a corresponding POMDP model. The reward matrices are initialized by assigning 
a reward (+10) for the right action at a specific state and penalties of (-20) to the wrong actions. 
Performing ὃ  or none/wait will have a cost of -1 at each state. 
 
Defining the transition and emission probabilities and building the matrices require initial guesses 
based on heuristics. In other words, Reasonable assumptions and heuristics are used to assign 
higher probabilities to common events, e.g. doing an action and transitioning from one state to 
another, while we assign lower probabilities to rare and uncommon events. For instance, an 
initial guess for the transition probability of doing “move” and transitioning from “Off Spot” state 
to “On Spot” state is very high. These probabilities are refined and updated using data collected 
from running quadcopter’s POMDP models in operational scenario simulations.  
 
As stated above, the value function in the quadcopter’s POMDP model is designed to evaluate 
policies for a short episode in the scenario, rather than evaluating all available policies. At the 
beginning of each episode (time step = t), the value function receives the belief vector from the 
previous episode, and uses its current available information (i.e. the current belief vector, 
transition and emission, and reward matrices) to: 1) calculate the value of each policy resulting 
from the current belief vector and each action, and update the belief vector for that action 
considering all available observations (time step = t+1), and 2) calculate the values of resulting 
policies from the updated beliefs and all available actions (time step = t+2). Basically, the value 
function investigates all different beliefs, resulting from the current belief vector and each action, 
by looking ahead for one-time step and searches for the best series of actions that produces the 
maximum reward for that episode. For instance, if we assume that the current belief vector (from 
previous episode) is ὦ ὦȟὦȟὦȟὦ  the value function will calculate the value, ὠὥ, of the 
policy that results from ὦand action ὥ, from the action space and update the belief vector using 
ὦ, ὥ, for all available observations ὕ  ὕȟὕȟὕȟὕ . After updating the belief vectors, 
ὦᴂπȟὦᴂρȟὦᴂςȟὦᴂσ , the value function calculates the values of policies 
ὠππȟȣȟὠστ for each updated belief vector by considering the probability of transitioning to 
that belief vector, which is equal to the overall probability of receiving the specific observation 
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in ὦ that resulted in that belief vector. Finally, the value function returns a sequence of actions 
that produces the highest policy value at that episode. Table 6 presents the pseudo-code for 
POMDP Value Function calculations.  
 
 

Figure 8 represents an example of the quadcopter’s physical readiness POMDP model in a 
simulated scenario. In this example, the UAV’s physical readiness POMDP starts with equal beliefs 
over the states, because it has not received any observations at that moment. Thus, the value 
function decides to “wait” until it receives an observation. After performing the “None/Wait” 
action, the quadcopter receives an observation, which implies that the quadcopter is in a good 
health status and has enough battery, “Good to Go”, that results in increasing the belief of Ὓ. 
The value function evaluates the updated belief and calculates the value of performing various 
actions using the rewards and penalties that are provided in the reward matrix, and the action 
“Asking the Lower Level POMDP” receives the highest value, 7.41, based on the updated belief. 
This action enables the lower level POMDP, so the quadcopter can perform the assigned mission. 
After performing the “Ask” action, the quadcopter’s physical readiness POMDP receives another 
observation, “Good to Go” and updates its belief vector. At this point, Ὓ, receives a higher 
probability (0.95) compared to the previous belief vector, in which the probability of Ὓ was 0.83. 
The value function evaluates the updated belief vector and the action “Ask the Lower Level 
POMDP” with value of 11.6 becomes the next decision. However, after performing the “Ask” 
action, the POMDP receives an observation that means the battery voltage is in a yellow range, 

 
ὊόὲὧὸὭέὲ ὖὕὓὈὖͅὠὥὰόὩὦȟὤȟὝȟὙ : 
ὍὲὭὸὭὥὰὭᾀὩ ὺ  ȟὭὲὨὩὼρ   
Ὂέὶ ὥὧὸὭέὲ  π ὸέ ΠὥὧὸὭέὲίȡ 
 ὍὲὭὸὭὥὰὭᾀὩ Ὣὥάάὥ  πȢωȠ 
 ὍὲὭὸὭὥὰὭᾀὩ ὴὶέὦὸͅὩάὴ  
 ὍὲὭὸὭὥὰὭᾀὩ ὺͅὸὩάὴ  
 Ὂέὶ έ ρ ὸέ ΠέὦίὩὶὺὥὸὭέὲί: 
  ὦ  όὴὨὥὸὩ ὦὩὰὭὩὪ ίὸὥὸὩὥί ὦȟὤȟὝȟὥὧὸὭέὲȟέȠ 

  Ὂέὶ ὥ π ὸέ ΠὥὧὸὭέὲίȡ 
                ᾠὸὩάὴέȟὥ ίόάὤȡȟὥὧὸὭέὲȟέ ὦz ᶻ Ὑȡȟὥ ὦz  

  ὉὲὨ Ὢέὶ 
  ὴὶέὦὸͅὩάὴN ίόάὤȡȟὥὧὸὭέὲȟέ ὦz  Ⱦz
 ὴὶέὦὥὦὭὰὭὸὭὩί έὪ έὦίὩὶὺὥὸὭέὲί Ὥὲ ὦ Ⱦz 
 ὉὲὨ Ὢέὶ  
 ὭὲᾨÍÁØNὥὶὫάὥὼὴὶέὦὸͅὩάὴ Ⱦz άέίὸ ὴὶέὦὥὦὰὩ έὦίὩὶὺὥὸὭέὲ Ὥὲ ὦ Ⱦz 
 ὠ N  ὙȡȟὥὧὸὭέὲὦz  Ὣὥάάὥz άὥὼὺͅὸὩάὴὭὲᾨάὥὼ ȟȡ  
 ὭὲὨὩὼρN ὥὧὸὭέὲȟὭὲᾨάὥὼ 
ὙὩὸόὶὲ ὭὲὨὩὼρὥὶὫάὥὼὠ  

Table 7: Pseudo-Code for the POMDP Value Function 
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“Battery Yellow” and increases the probability of state “Battery Yellow” to 0.71. The value 
function evaluates the current belief and decides that the “Go Safe” action is preferred with a 
value of 7.39. The POMDP then receives another observation that shows there is an issue with 
the quadcopter that implies “Health Issue”. As shown in the last bar chart in Figure 3, the 
probability of the “Health Issue” state is increased to 0.68 after updating the belief vector. Thus, 
the POMDP decides to immediately perform the “Land” action and abort the mission because of 
the health issue. 
 

 

Figure 8: An example of UAV's Readiness POMDP Including Belief Vectors and Value Function Evaluations 

 

HIDDEN STATES IN THE UAV’S POMDP MODEL 

As noted before, a POMDP accounts for imperfect knowledge of both system and environmental 
states. This implies that the POMDP can plan and make decisions even if it receives an 
observation that it cannot interpret using its observable states. In other words, a POMDP can 
change non-Markovian state information into Markovian through incorporation of hidden states. 
The hidden states and their transition and emission probabilities are not known initially. This 
implies that there are no transition and emission probabilities associated with the hidden states 
in the pre-defined transition and emission matrices. If a hidden state needs to be introduced in a 
POMDP, the POMDP model should expand by initializing a new state in its belief vector, 
transition, emission, and reward matrices. In the quadcopter’s POMDP model, a set of functions 
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are implemented to initialize hidden states with appropriate probabilities in the POMDP model. 
For instance, if the POMDP receives an observation that it cannot explain using its available 
states, the POMDP expanding functions add a new state into the POMDP matrices and belief 
vector and assign them small probabilities (e.g. 0.001). Later, these probabilities are refined and 
updated in the light of data collected from scenario simulations.   
 

EXPERIMENTAL TESTBED DEVELOPMENT 

In principle, the proposed R&D could be carried out using simulated UAVs.  However, 
demonstration of the work using an experimental testbed is important, for several reasons: 

¶ The real world always presents unanticipated difficulties which challenge an approach in 
significantly greater depth than do simulations; 

¶ Actual devices (sensors and actuators) are noisy and require more careful analysis and 
control than do simulated devices; and 

¶ Experimental demonstrations tend to be more convincing than simulations. 
 
The goal of the experimental testbed development was to demonstrate a prototype UAV whose 
actions could be controlled by a decision-making algorithm such as POMDP.  The conditions 
(requirements/constraints) included: 

¶ Ability to fly in an indoor laboratory as well as outdoors 

¶ Large enough to carry a powerful onboard computer with a full suite of sensors (camera, 
GPS, IMU) which can run autopilot software as well as POMDP 

¶ Support for open source software 
 

Flying indoors meant that airplanes were ruled out as well as gasoline-powered motors.  Battery-
powered quadcopters were thus the clear choice.  We selected a class of quadcopters 
approximately 24-inches in diameter, with 1000 KV motors and 10-inch propellers, taking a LiPo 
battery with capacity of order 3000-5000 mAH.  There is a wide variety of kits and parts for this 
class of vehicles. Furthermore, since these are widely used by hobbyists, they are generally quite 
inexpensive. 
 
For the onboard computer, a combination of Raspberry Pi 3 single-board computer and Navio2 
flight controller was selected.  The Raspberry Pi is a little smaller than a deck of cards but is a 
quad-core 1-GHz 64-bit CPU with 1 GB RAM, costing about $35.  It runs a flavor of Debian Linux 
and so supports essentially all open-source software.   
 
The Navio2 is a flight controller board that connects to the CPU via the GPIO pins.  It carries the 
GPS, IMU, and magnetometer, as well as the PWM controllers for the motors.  It is the most 
expensive component of the entire quadcopter but is essential for autonomous flight. 
 
For the autopilot, we selected Ardupilot, an open source program, because of its support for our 
hardware and because there is a wide variety of modes of operation as well as supporting 
modules.  We particularly required guided mode, in which the UAV responds to external 
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commands such as moving to a specified position, setting a specified velocity vector, or holding 
at a specified location and attitude.  (An external command is one which originates outside the 
autopilot program.  It can come from a ground station computer over a wireless communications 
link or from a different program running on the UAV CPU.  Thus, guided mode is useful for fully 
autonomous maneuvers as well as centrally controlled operation.) 
 
Ardupilot supports both simulated and physical quadcopters.  Our prototype demonstration 
employed this capability to control of 3 quadcopters, two simulated and one actual. At present 
we have two complete operational quadcopters including flight controllers. 
 
Indoor flight in our laboratory presents a special challenge because autonomous flight requires a 
solid GPS lock in the unmodified Ardupilot software.  However, the GPS satellite signals are too 
weak in our laboratory to achieve this lock.  Accordingly, one of our current tasks is to modify 
Ardupilot so that we are able to use position and attitude information obtained from camera 
observations of multiple Aruco markers positioned on the walls and ceiling of our lab.  We have 
experimentally demonstrated good accuracy with this technique but have not yet incorporated 
it into the flight software. 
 

SUMMARY AND CONCLUSION 

This research project has developed a model-based approach for the design of resilient systems. 
The approach combines formal modeling and probabilistic modeling to ensure requisite system 
verifiability and flexibility. The approach combines traditional contract from Contract-Based 
Design (CBD) with flexible assertions and Partially Observable Markov Decision Process (POMDP) 
to create a hybrid modeling construct called a Resilience Contract (RC). A RC is well-suited to 
modeling complex systems such that both system model verification and system flexibility can 
be simultaneously addressed. The approach enables both system and SoS model verification and 
offers the requisite flexibility to respond to disruptions. The approach is shown in the context of 
multi-UAV swarm control with several simplifications that do not limit the feasibility of the 
approach. For example, system state is a multi-faceted term that includes system’s location, 
health, fuel status, sensor status, etc. For simplicity, we have used system location as system 
state in the figures presented. However, the approach is sufficiently general to be applied to a 
variety of SoS including autonomous vehicle networks and smart grids. 
 
Future work will focus on solving the UAV navigation problem using POMDP. To this end, the first 
step will be to employ belief states along with sensed information from the environment to 
update the pre-defined reward and penalty values for the grid. In other words, the probabilities 
associated with the belief state (array) will be combined. Specifically, the pre-defined grid value 
and the new values will be used as new rewards/penalties to determine the best policy at that 
time. This will result in the UAV’s action (movement) within the operational environment. The 
process of updating the belief state and grid values (rewards/penalties) will continue, until the 
UAV reaches its destination.   
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APPENDIX A – VEHICLE PHYSICS MODELING  

For vehicle physics models, we need “just enough fidelity” to accept action commands from 
probabilistic model and drive various visualization on the dashboard for situation awareness. 
Since the number of UAVs can grow, we need a sparse representation for vehicles. To this end, 
we chose quadcopters for our research because of their relative simplicity. Quadcopters in 
general are under-actuated systems in that 6 degrees of freedom (X, Y, Z, roll, pitch, and yaw) are 
controlled by only 4 rotors. These vehicles are nonlinear systems that require two non-linear 
controllers at the physics level, one for controlling attitude and the other for controlling position. 
Figure below shows a quadcopter for a particular orientation. 
 

 
 
 
 
 
 
The physics model makes the following assumptions: a) the quadrotor is a rigid body with 
symmetric mass distribution; b) propellers are rigid; c) center of gravity and body fixed frame 
origin are co-located; d) Earth’s gravitational field (g), quadrotor’s mass (m) and body inertia 
matrix (J) are constants; e) thrust factor and torque factor of motors are constants; f) inertia of 
motors and rotors is negligible; g) aerodynamic drag force is proportional to translational 
velocity; and h) rotation of the Earth relative to distant stars is negligible. With these 
assumptions, the model becomes simpler, but requires further simplification to reduce 
computation. 
 
Waypoint-waypoint path generation is done using analytical function called Wymore’s Standard 
Scoring Function (Wymore, 1993). Since the vehicle in the illustrative example is in a near hover 
mode, and errors in X, Y, and Z directions are negligible, the vehicle’s position can be predicted 
by calculating path coordinates without having to run a full dynamics model. Wymore’s function 
used for path generation takes the following form. This function can be used to estimate vehicle 
location.  
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where t is simulation time; B is midpoint time between two waypoints; S is minimum speed 
(S=1/(B-L)); and L is required time from a waypoint to keep X, Y, Z bounded.  
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